|
|
Literature to CAPRAM Development
|
Hoffmann, E. H.; Schrödner, R.; Tilgner, A.; Wolke, R.; and Herrmann, H.; CAPRAM reduction towards an operational multiphase halogen and dimethyl sulfide chemistry treatment in the chemistry transport model COSMO-MUSCAT(5.04e), Geosci. Model Dev. 13, 2587-2609, 2020.
Hoffmann, E. H.; Tilgner, A.; Vogelsberg, U.; Wolke, R.; and Herrmann, H.; Near-explicit multiphase modeling of halogen chemistry in a mixed urban and maritime coastal area, ACS Earth Space Chem. 3, 2452-2471, 2019.
Bräuer, P.; Mouchel-Vallon, C.; Tilgner, A.; Mutzel, A.; Böge, O.; Rodigast, M.; Poulain, L.; van Pinxteren, D.; Wolke, R.; Aumont, B. and Herrmann, H.; Development of a protocol for the auto-generation of explicit aqueous-phase oxidation schemes of organic compounds, Atmos. Chem. Phys. 19, 9209-9239, 2019.
Hoffmann, E. H.; Tilgner, A.; Wolke, R.; Böge, O.; Walter, A. and Herrmann, H.; Oxidation of substituted aromatic hydrocarbons in the tropospheric aqueous phase: kinetic mechanism development and modelling , Phys. Chem. Chem. Phys. 20, 10960, 2018.
Hoffmann, E. H.; Tilgner, A.; Schrödner, R.; Bräuer, P.; Wolke, R. and Herrmann, H.; An advanced modeling study on the impacts and atmospheric implications of multiphase dimethyl sulfide chemistry, Proc. Natl. Acad. Sci. USA 113, 11776-11781, 2016.
Weller, C.; Tilgner, A.; Bräuer, P. and Herrmann, H.; Modeling the Impact of Iron-Carboxylate Photochemistry on Radical Budget and Carboxylate Degradation in Cloud Droplets and Particles, Environ. Sci. Technol. 48, 5652-5659, 2014.
Bräuer, P.; Tilgner, A.; Wolke, R. and Herrmann, H.; Mechanism development and modelling of tropospheric multiphase halogen chemistry: The CAPRAM Halogen Module 2.0 (HM2), J. Atmos. Chem. 70, 19-52, 2013.
Tilgner, A. and Herrmann, H.; Radical-driven carbonyl-to-acid conversion and acid degradation in tropospheric aqueous systems studied by CAPRAM, Atmos. Environ. 44, 5415-5422, 2010.
Deguillaume, L.; Tilgner, A.; Schrödner, R.; Wolke, R.; Chaumerliac, N. and Herrmann, H.; Towards an operational aqueous phase chemistry mechanism for regional chemistry-transport models: CAPRAM-RED and its application to the COSMO-MUSCAT model, J. Atmos. Chem. 64, 1-35, 2009.
Herrmann, H.; Tilgner, A.; Barzaghi, P.; Majdik, Z.; Gligorovski, S.; Poulain, L. and Monod, A.; Towards a more detailed description of tropospheric aqueous phase organic chemistry: CAPRAM 3.0, Atmos. Environ. 39, 4351-4363, 2005a.
Herrmann, H.; Majdik, Z.; Ervens, B. and Weise D.; Halogen production from aqueous tropospheric particle, Chemosphere 52, 485-502, 2003.
Ervens, B.; George, C.; Willams, J. E.; Buxton, G. V.; Salmon, G .A.; Bydder, M.; Wilkinson, F.; Dentener, F.; Mirabel, P. and Herrmann, H.; CAPRAM 2.4 (MODAC mechanism): An extended and condensed tropospheric aqueous phase mechanism and its application, J. Geophys. Res. 108, 4426, 2003.
Ervens, B. and Herrmann, H.; Mechanism development for tropospheric multiphase chemistry with CAPRAM, In: Sportisse B. (Editor) Air Pollution Modelling and Simulation. Springer, Berlin, Heidelberg, 413-421, 2002.
Herrmann, H.; Ervens, B.; Jacobi, H.-W.; Wolke, R.; Nowacki P. and Zellner, R.; CAPRAM 2.3: A Chemical Aqueous Phase Radical Mechanism for Tropospheric Chemistry, J. Atmos. Chem. 36, 231-284, 2000.
Herrmann, H.; Ervens, B.; Nowacki, P.; Wolke, R. and Zellner, R.; A chemical aqueous phase radical mechanism for tropospheric chemistry, Chemosphere 38, 1223-1232, 1999.
Herrmann, H.; Reese, A.; Ervens, B.; Wicktor, F. and Zellner, R.; Laboratory and modelling studies of tropospheric multiphase conversions involving some C1 and C2 peroxyl radical, Phys. Chem. Earth B 24, 287-290, 1999.
MODAC-Model Development for Tropospheric Aerosol and Cloud Chemistry. Final Report, , to Project ENV4-CT97-0388, CEC Brussels, 2000.
|
Literature to CAPRAM applications and modifications
|
Aregahegn, K. Z.; Felber, T.; Tilgner, A.; Hoffmann, E. H.; Schaefer, T.; and Herrmann, H.; Kinetics and Mechanisms of Aqueous-Phase Reactions of Triplet-State Imidazole-2-carboxaldehyde and 3,4-Dimethoxybenzaldehyde with alpha,beta-Unsaturated Carbonyl Compounds, J. Phys. Chem. A 126, 8727-8740, 2022.
Yao, Y.; Dawson, M. L.; Dabdub, D.; and Riemer, N.; Evaluating the impacts of cloud processing on resuspended aerosol particles after cloud evaporation using a particle-resolved model, J. Geophys. Res.–Atmos. 126, e2021JD034992, 2021
Ye, C.; Chen, H.; Hoffmann, E. H.; Mettke, P.; Tilgner, A.; He, L.; Mutzel, A.; Brüggemann, M.; Poulain, L.; Schaefer, T.; Heinold, B.; Ma, Z.; Liu, P.; Xue, C.; Zhao, X.; Zhang, C.; Zhang, F.; Sun, H.; Li, Q.; Wang, L.; Yang, X.; Wang, J.; Liu, C.; Xing, C.; Mu, Y.; Chen, J.; and Herrmann, H.; Particle-Phase Photoreactions of HULIS and TMIs Establish a Strong Source of H2O2 and Particulate Sulfate in the Winter North China Plain, Environ. Sci. Technol. 55, 7818-7830, 2021
Rusumdar, A. J.; Tilgner, A.; Wolke, R.; and Herrmann, H.; Treatment of non-ideality in the SPACCIM multiphase model – Part 2: Impacts on the multiphase chemical processing in deliquesced aerosol particles, Atmos. Chem. Phys. 20, 10351-10377, 2020.
Zhu, Y.; Tilgner, A.; Hoffmann, E. H.; Herrmann, H.; Kawamura, K.; Yang, L.; Xue, L.; and Wang, W.; Multiphase MCM–CAPRAM modeling of the formation and processing of secondary aerosol constituents observed during the Mt. Tai summer campaign in 2014, Atmos. Chem. Phys. 20, 6725–6747, 2020.
Berndt, T.; Scholz, W.; Mender, B.; Fischer, L.; Hoffmann, E. H.; Tilgner, A.; Hyttinen, N.; Prisle, N. L.; Hansel, A.; Herrmann, H.; Fast Peroxy Radical Isomerization and OH Recycling in the Reaction of OH Radicals with Dimethyl Sulfide, J. Phys. Chem. Lett. 10, 6478–6483, 2019.
Hoffmann, E. H.; Tilgner, A.; Wolke, R.; and Herrmann, H.; Enhanced chlorine and bromine atom activation by hydrolysis of halogen nitrates from marine aerosols at polluted coastal areas, Environ. Sci. Technol. 53, 771-778, 2019.
Wen, L.; Xue, L.; Wang, X.; Xu, C.; Chen, T.; Yang, L.; Wang, T.; Zhang, Q.; and Wang, W.; Summertime fine particulate nitrate pollution in the North China Plain: increasing trends, formation mechanisms and implications for control policy, Atmos. Chem. Phys. 18, 11261-11275, 2018.
Rusumdar, A. J.; Wolke, R.; Tilgner, A.; and Herrmann, H.; Treatment of non-ideality in the SPACCIM multiphase model – Part 1: Model development, Geosci. Model Dev. 9, 247-281, 2016.
Whalley, L. K.; Stone, D.; George, I. J.; Mertes, S.; van Pinxteren, D.; Tilgner, A.; Herrmann, H.; Evans, M. J. and Heard, D. E.; The influence of clouds on radical concentrations: observations and modelling studies of HOx during the Hill Cap Cloud Thuringia (HCCT) campaign in 2010, Atmos. Chem. Phys., 15, 3289-3301, 2015
Guo, J.; Tilgner, A.; Yeung, C. P.; Wang, Z.; Louie, P. K. K.; Luk, C. W. Y.; Xu, Z.; Yuan, C.; Gao, Y.; Poon, S.; Herrmann, H.; Lee, S.; Lam, K. S. and Wang, T.; Atmospheric peroxides in a polluted subtropical environment: Seasonal variation, sources and sinks, and importance of heterogeneous processes, Environ. Sci. Technol. 48, 1443-1450, 2014.
Schrödner, R.; Tilgner, A.; Wolke, R. and Herrmann, H.; Modeling the multiphase processing of an urban and a rural air mass with COSMO-MUSCAT, Urban Climate 10, 720-731, 2014.
Schrödner, R.; Wolke, R.; Tilgner, A. and Herrmann, H.; The Influence of Cloud Chemical Processes on the Formation of Secondary Particulate Matter, In: Steyn D., Mathur R. (Editors) AIR POLLUTION MODELING AND ITS APPLICATION XXIII. Springer Proceedings in Complexity. Springer, Cham, 97-101, 2014.
Tilgner, A.; Bräuer, P.; Wolke, R. and Herrmann, H.; Modelling multiphase chemistry in deliquescent aerosols and clouds using CAPRAM3.0, J. Atmos. Chem. 70, 221-256, 2013.
Herrmann, H.; Hoffmann, D.; Schaefer,T.; Bräuer, P. and Tilgner, A.; Tropospheric aqueous-phase free-radical chemistry: Radical sources, spectra, reaction kinetics and prediction tool, Chem. Phys. Chem. 11, 3796-3822, 2010.
Hoffmann, D.; Tilgner, A.; Iinuma, Y. and Herrmann, H.; Atmospheric stability of levoglucosan: A detailed laboratory and modeling study, Environ. Sci. Technol. 44, 694-699, 2010.
Tilgner, A.; Wolke, R. and Herrmann, H.; CAPRAM modelling of aqueous aerosol and cloud chemistry. Simulation and assessment of chemical processes in a multiphase environment, In: I. Barnes and M. Kharytonov (Editors) Proceedings of the NATO Advanced Research Workshop on Simulation and Assessment of Chemical Processes in a Multiphase Environment. Alushta, Ukraine 1 September 2007, Springer, Berlin ; Heidelberg ; New York ,107-122, 2008.
Herrmann, H.; Wolke, R.; Müller, K.; Brüggemann, E.; Gnauk, T.; Barzaghi, P.; Mertes, S.; Lehmann, K.; Massling, A.; Birmili, W.; Wiedensohler, A.; Wieprecht, W.; Acker, K.; Jaeschke, W.; Kramberger, H.; Syrcina, B.; Bächmann, K.; Collett, J.L. Jr.; Galgon, D.; Schwirn, K.; Nowak, A.; van Pinxteren, D.; Plewka, A.; Chemnitzer, R.; Rüd, C.; Hofmann, D.; Tilgner, A.; Diehl, K.; Heinold, B.; Hinneburg, D.; Knoth, O.; Sehili, A.M.; Simmel, M.; Wurzler, S.; Mauersberger, G.; Majdik, Z.; Müller, F.; FEBUKO and MODMEP: Field measurements and modelling of aerosol and cloud multiphase processes, Atmos. Environ. 39, 4169-4183, 2005b.
Sehili, A.M.; Wolke, R.; Knoth, O.; Simmel, M.; Tilgner, A. and Herrmann, H.; Comparison of different model approaches for the simulation of multiphase processes, Atmos. Environ. 39, 4403-4417, 2005.
Tilgner, A.; Majdik, Z.; Sehili, A.M.; Simmel, M.; Wolke, R. and Herrmann, H.; SPACCIM: Simulations of the multiphase chemistry occurring in the FEBUKO hill cap cloud experiments, Atmos. Environ. 39 (23-24), 4389-4401, 2005.
Wolke, R.; Sehili, A.M.; Simmel, M.; Knoth, O.; Tilgner, A. and Herrmann, H.; SPACCIM: A parcel model with detailed microphysics and complex multiphase chemistry, Atmos. Environ. 39, 4375-4388, 2005.
Lahoutifard, N.; Ammann, M.; Gutzwiller, L.; Ervens, B. and George, C.; The impact of multiphase reactions of NO2 with aromatics: a modelling approach, Atmos. Chem. Phys. 2, 215-226, 2002.
Williams, J. E.; Dentener, F. J. and van den Berg, A. R.; The influence of cloud chemistry on HOx and NOx in the Marine Boundary Layer: a 1-D modelling study. Atmos. Chem. Phys. 2, 39-54, 2002.
|
Mouchel-Vallon, C.; Deguillaume, L.; Monod, A.; Perroux, H.; Rose, C.; Ghigo, G.; Long, Y.; Leriche, M.; Aumont, B.; Patryl, L.; Armand, P.; and Chaumerliac, N.; CLEPS 1.0: A new protocol for cloud aqueous phase oxidation of VOC mechanisms, Geosci. Model Dev. 10, 1339-1362, 2017.
Ng, N. L.; Brown, S. S.; Archibald, A. T.; Atlas, E.; Cohen, R. C.; Crowley, J. N.; Day, D. A.; Donahue, N. M.; Fry, J. L.; Fuchs, H.; Griffin, R. J.; Guzman, M. I.; Herrmann, H.; Hodzic, A.; Iinuma, Y.; Jimenez, J. L.; Kiendler-Scharr, A.; Lee, B. H.; Luecken, D. J.; Mao, J.; McLaren, R.; Mutzel, A.; Osthoff, H. D.; Ouyang, B.; Picquet-Varrault, B.; Platt, U.; Pye, H. O. T.; Rudich, Y.; Schwantes, R. H.; Shiraiwa, M.; Stutz, J.; Thornton, J. A.; Tilgner, A.; Williams, B. J. and Zaveri, R. A.; Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol, Atmos. Chem. Phys. 17, 2103-2162, 2017.
Ervens, B.; Modeling the Processing of Aerosol and Trace Gases in Clouds and Fogs, Chem. Rev. 115, 4157-4198, 2015.
Charbouillot, T.; Gorini, S.; Voyard, G.; Parazols, M.; Brigante, M.; Deguillaume, L.; Delort A.-M. and Mailhot, G.; Mechanism of carboxylic acid photooxidation in atmospheric aqueous phase: Formation, fate and reactivity, Atmos. Environ. 56, 1-8, 2012.
Ginnebaugh, D. and Jacobson, M; Coupling of highly explicit gas and aqueous chemistry mechanisms for use in 3-D, Atmos. Environ. 62, 408-415, 2012.
Ginnebaugh, D. and Jacobson, M; Examining the impacts of ethanol (E85) versus gasoline photochemical production of smog in a fog using near-explicit gas- and aqueous-chemistry mechanisms, Environ. Res. Lett. 7, 2012.
Pathak, R. K.; Wang, T. and Wu, W. S.; Nighttime enhancement of PM2.5 nitrate in ammonia-poor atmospheric conditions in Beijing and Shanghai: Plausible contributions of heterogeneous hydrolysis of N2O5 and HNO3 partitioning, Atmos. Environ. 45, 1183-1191, 2011.
Leriche, M.; Chaumerliac, N. and Monod, A; Coupling quasi-spectral microphysics with multiphase chemistry: a case study of a polluted air mass at the top of the Puy de Dôme mountain (France), Atmos. Environ. 35, 5411-5423, 2001.
Chaumerliac, N.; Leriche, M. and Audiffren, N.; Modeling of scavenging processes in clouds: some remaining questions about the partitioning of gases among gas and liquid phase, Atmos. Res. 53, 29-43, 2000.
Leriche, M.; Voisin, D.; Chaumerliac, N.; Monod, A. and Aumont, B.; A model for tropospheric multiphase chemistry: application to one cloudy event during the CIME experiment, Atmos. Environ. 34, 5015-5036, 2000.
|
Additionally cited literature important for CAPRAM modelling
|
Schwartz, S.; Mass transport considerations pertinent to aqueous phase reactions of gases in liquid water clouds In: Jaeschke,W. (Editor), Chemistry of Multiphase Atmospheric Systems, NATO ASI Series. Springer, Berlin, pp. 415 471, 1986.
Simmel, M.; Diehl, K. and Wurzler, S.; Numerical simulation of the microphysics of an orographic cloud: Comparison with measurements and sensitivity studies, Atmos. Environ. 39, 4365-4373, 2005.
Stockwell, W. R.; Middleton, P.; et al.; The second generation regional acid deposition model chemical mechanism for regional air quality modeling, J. Geophys. Res. 95, 16,343-16,367, 1990.
Stockwell, W. R.; Kirchner, F.; et al.; A new mechanism for regional atmospheric chemistry modeling, Journal of Geophysical Research 102, 25,847-25,879, 1997.
|
Hoffmann, E. H.; CAPRAM mechanism and model developments for investigating marine multiphase chemistry effects linked to air quality and climate: from process to regional scale modelling, University of Leipzig, 2020.
Bräuer, P.; Extension and application of a tropospheric aqueous phase chemical mechanism (CAPRAM) for aerosol and cloud models, University of Leipzig, 2015.
Tilgner, A.; Modelling of the physico-chemical multiphase processing of tropospheric aerosols. University of Leipzig, 2009.
Ervens, B.; Troposphärische Multiphasenchemie: Modellrechnungen und kinetische Untersuchungen von Reaktionen des OH-Radikals in wässriger Lösung. University of Leipzig, 2001.
|
| |